

Symposium HyAllgäu am 29. und 30. Juli 2021 Analyse globaler H2-Aktivitäten - Anwendbarkeit im Allgäu W. E. Mehr, S. Lemberg, K. Federl

Analyse globaler H2-Aktivitäten - Anwendbarkeit im Allgäu Inhalt

- Methodik
- Waste-to-Hydrogen Technologie mittels Plasmavergasung \bigcirc
- Wasserstoffquartierlösung Esslingen \circ
- Wasserstoff aus Gülle
- Farbenlehre?

NOW-GMBH.DE

auf Basis einer weltweiten Analyse

Methodik: Analyse von über 120 Projekten:

in Deutschland, Europa, den USA, Japan und Südkorea.

- o Im Allgäu könnten zukünftig zur Anwendung kommen:
 - die Waste-to-Hydrogen Technologie mittels Plasmavergasung,
 - Wasserstoffquartierlösungen und
 - Dampfreformierung / Methanpyrolyse aus Gülle / Biogas.

Die Bewertung der Technologien wurde im Wesentlichen nach Technologiereifegraden vorgenommen.

Bewertung nach Technologiereifegraden:

TRL 1	Beobachtung und Beschreibung des Funktionsprinzips
TRL 2	Beschreibung der Anwendung der Technologie
TRL 3	Nachweis der Funktionsfähigkeit der Technologie
TRL 4	Versuchsaufbau im Labor
TRL 5	Versuchsaufbau in (simulierter/ vereinfachter) Einsatzumgebung
TRL 6	Prototyp in (simulierter/vereinfachter) Einsatzumgebung
TRL 7	Prototyp im (realen) Einsatz
TRL 8	Nachweis der Funktionsfähigkeit im Einsatzbereich (Zulassungsprozess abgeschlossen)
TRL 9	Technologie im Markt

Koordiniert durch:

NOW-GMBH.DE

Waste-to-Hydrogen Technologie mittels Plasmavergasung

Plasmavergasung in Lancaster, Kalifornien:

- Anlage seit erstem Quartal 2021 im Bau durch SG H2 Energy Global, LLC.
- Pro Jahr sollen 42.000 t Mischpapierabfall durch
 Hochtemperaturvergasung bei 3.500 bis 4.000° C verarbeitet werden
 → grüner Wasserstoff.
- o Potenzial: 11.000 kg H2 / d \rightarrow 3,8 Mio. kg H2 / a.
- Verwertung von wasserstoffreichen Abfällen, wie biogenem Abfall, Kunststoff, Textilien, Reifen etc.
- o CO2-Bilanz abhängig vom Einsatzstoff.
- Bei Einsatz von Kunststoffen Abscheidung von CO2 durch Carbon Capture Storage CCS-Technologie, flüssiges CO2 wird in tiefen Erdschichten eingelagert (problematisch).
- \circ Wassereinsatz: kg H₂0 / kg H₂ = 3,6 / 1
- Einstufung: TRL 6 bis 8

Prinzip:

- Plasmaerzeugung mittels elektrischer Energie.
- Durch Zuführung von Sauerstoff zur Oxidation wird ein Teil der in Einsatzstoffen enthaltenen Energie als Wärmequelle genutzt.

Quelle: SG H2 Energy, "Technology," SG H2 Energy, 2020. [Online]. Available: https://www.sgh2energy.com/technology.

Gefördert durch:

Bundesministerium für Verkehr und digitale Infrastruktur Koordiniert durch:

 ∞

NOW-GMBH.DE

Projektträger Jülich Forschungszentrum Jülich

Wasserstoffquartierlösung Esslingen: "Neue Weststadt" Stadtwerke Esslingen

Abbildung der kompletten Wertschöpfungskette:

von der Erzeugung, über die Verteilung bis zum Verbrauch:

- Verbundprojekt im Förderschwerpunkt EnEff:Stadt (BMWi)
- PV-Anlagen auf Dachfläche von 120.000 m² auf Wohnungen, Büround Gewerbeflächen und einem Teil des Dachs der Hochschule Esslingen.
- H2-Erzeugung mittels eines 1 MW-Elektrolyseurs.
- Bei Überschuss an elektrischer Energie aus PV wird diese ins Netzt gespeist.
- Blockheizkraftwerk dient zur Rückverstromung des H2 bei Mangel an PV-Energie und zur Wärmeversorgung.
- Bauantrag Ende 2020, Baubeginn Mitte 2021
- Einstufung: TRL 9

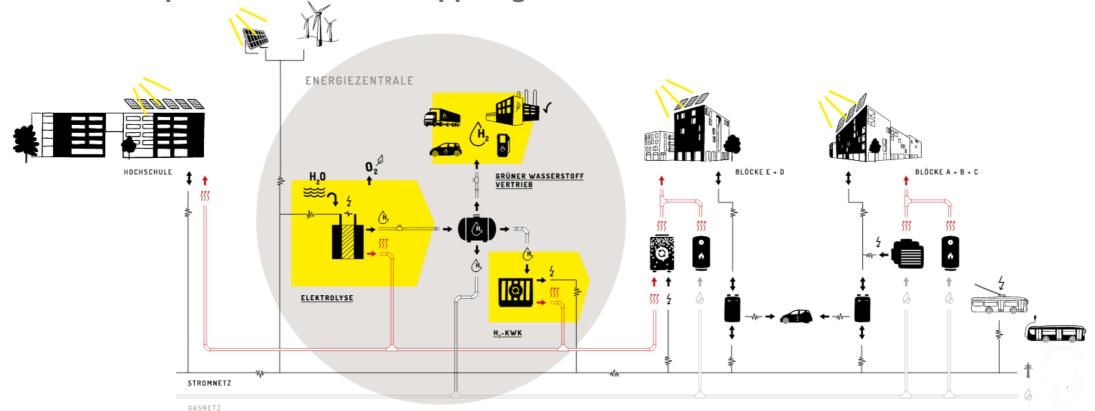
Besonderheiten:

- On-site-Betrieb von Elektrolyseur und H₂-KWK
- Überschüssige elektrische Energie wird einer Nutzung auch im öffentlichen Nahverkehr zugeführt .
- 1 MW-Elektrolyseur generiert 200 bis 400 kg H2 pro Tag.
- Abwärme des Elektrolyseurs versorgt über Nahwärmenetz Bewohner des Quartiers mit Wärmeenergie.
- Einspeisung des Wasserstoffs in das Erdgasnetz.
- Betrieb einer H2-Tankstelle zur Betankung von Brennstoffzellen-Fahrzeugeb

 η_{System} ca. 85. bis 90% durch konsequente Abwärmenutzug

Koordiniert durch:

Projektträger Jülich Forschungszentrum Jülich



Wasserstoffquartierlösung Esslingen: "Neue Weststadt" Stadtzentrum Esslingen

Beispiel einer nahezu perfekten Sektorenkopplung:

Quelle: https://neue-weststadt.de/energiekonzept/

Koordiniert durch:

 ∞

NOW-GMBH.DE

Wasserstoff aus Gülle

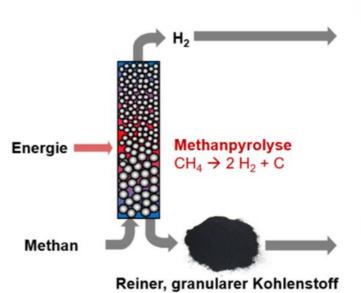
H2 aus Gülle – Projekt in Shikaoi Japan:

- Pilotprojekt bis Ende 2020.
- Eine Kuh scheidet im Jahr 23 Tonnen Exkremente aus.
- Diese Menge reicht aus, um einen Brennstoffzellen-Pkw (FCV)
 10.000 km zu betreiben.
- O Umwandlung der Gülle in Biogas (Biomethan) → Dampfreformierung → Wasserstoff.
- o Einstufung: TRL 9
- Allerdings ist die Dampfreformierung keine gute Lösung!

Prinzip:

Koordiniert durch:

N O W - G M B H . D E



Wasserstoff aus Gülle

H2 aus Gülle – im Allgäu:

- 2019 wurden im Allgäu rund 375.000 Rinder gezählt.
- Durch Dampfreformierung aus Gülle könnte eine Wasserstoffmenge von 1.760 t / a erzeugt werden.
- Nachteil: Aufbau der Infrastruktur
- Vorteile: Reduktion der Nitratbelastung von Böden und Grundwasser
- Bei der Dampfreformierung entstehen je gewonnene Tonne H2 ca. 10 Tonnen CO2!
- Die CCS-Methode zur Abscheidung und Einlagerung von CO2 in geeigneten Erdformationen ist keine ökologisch sinnvolle Möglichkeit.
- Deshalb wird für das Allgäu für die Zukunft die Methanpyrolyse zur Wasserstofferzeugung aus Gülle vorgeschlagen.

Methanpyrolyse:

Industrieller Wasserstoff H₂

Kohlenstoff für die Metallurgie, Elektroden und Spezialanwendungen

Koordiniert durch:

 ∞

NOW-GMBH.DE

Projekträger Jülici Forschungszentrum Jülici

Wasserstoff aus Gülle: Vergleich Dampfreformierung vs. Methanpyrolyse

Dampfreformierung:

Zwei Möglichkeiten der Dampfreformierung von Methan:

- Methan reagiert mit Wasserdampf zu Kohlenstoffmonooxid und Wasserstoff (SMR-Prozess)
- Methan reagiert mit Sauerstoff und Wasserdampf zu Kohlenstoffmonooxid und Wasserstoff (autothermer Prozess)

Wassergas-Shift-Reaktion:

- Kohlenstoffmonooxid reagiert mit Wasserdampf zu Wasserstoff und Kohlenstoffdioxid
- > Energiebedarf Dampfreformierung: ca. 40 kWh / kg H2
- Energiebedarf Wasserelektrolyse: ca. 50 kWh / kg H2

Einstufung: TRL 9

Methanpyrolyse:

- Methan wird durch Zufuhr von Energie mittels Pyrolyse in seine Bestandteile Wasserstoff und Kohlenstoff gespalten.
- Prozesstemperaturen liegen bei 1.000 1.400° C.
- Methanpyrolyse benötigt 80% weniger elektrische Energie als die Wasserelektrolyse.
- Kein Wassereinsatz.
- Keine CO2-Emissionen.

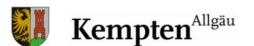
Es entstehen: Wasserstoff und granularer Kohlenstoff.

CO2-negatives Verfahren?

Aktuell noch keine markreifen Produkte verfügbar. Testanlage bei BASF seit Ende 2020 in Betrieb.

Einstufung: TRL 3 – 4 (BASF, Karlsruher Institut für Technologie)

Gefördert durch:



Projektiräger Jülich

Wasserstoff-Farbenlehre


Müssen wir die Farbenlehre neu denken?

Wenn Türkiser Wassersoff, erzeugt durch Methanpyrolyse auf Basis biogener Einsatzstoffe, in der Wirkung CO2-negativ ist, ist er dann nicht besser als grüner Wasserstoff?

H2-Bezeichnungen	Herstellung
Grüner Wasserstoff CO ₂ -neutral	Zu 100 % aus erneuerbaren Energien
Grauer Wasserstoff nicht CO ₂ -neutral	Aus fossilen Brennstoffen (Dampfreformierung)
Blauer Wasserstoff CO ₂ -neutral	Wie grauer, jedoch wird das CO2 nicht in die Atmosphäre abgegeben
Türkiser Wasserstoff CO ₂ -neutral oder negativ	Aus Methanpyrolyse, es entsteht Kohlenstoff
Roter oder schwarzer Wasserstoff CO ₂ -neutral	Aus Kernenergie
Weißer Wasserstoff CO ₂ -neutral	Natürliche Vorkommen mittels Frackingtechnologien

Koordiniert durch:

 ∞

NOW-GMBH.DE

Vielen Dank für Ihre Aufmerksamkeit.

Prof. Dr. rer. nat. Werner E. Mehr Hochschule Kempten Bahnhofstr. 61 87435 Kempten

Tel: +49 831 2523 9564 Fax: +49 831 2523 229 werner.mehr@hs-kempten.de

Koordiniert durch:

MON

NOW-GMBH.DE

Projektiräger Jülich Forschungszentrum Jülich